

Introduction

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u> Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

Course Description

How is our course?

Hamid R. Rabiee & Maryam Ramezani

Machine Learning Mathematics

Machine Learning Mathematics

01

Linear Algebra

Provides the foundation for manipulating data in highdimensional spaces, essential for vector operations in machine learning.

Statistics & Probability

Offers tools to model uncertainty and make inferences about data, forming the backbone of many machine learning algorithms.

03

Optimization

Focuses on finding the best parameters for a model by minimizing or maximizing an objective function.

04 formention Theory

Information Theory

Analyzes data compression and transmission, helping quantify uncertainty and information gain in machine learning models.

CE282: Linear Algebra

05

Signal Processing

Involves analyzing and transforming data signals, important for handling time-series data and feature extraction in machine learning.

Hamid R. Rabiee & Maryam Ramezani

06 Graph Theory

Studies networks of nodes and edges, crucial for understanding relationships in data and complex models like Graph Neural Networks.

Course Material

https://sut-ce-courses.github.io/linearalgebra (jabrekh.ir)

Linear Algebra / Spring 2024

Updates

Course Method

• Slides

- Writing on board
- Geometric Interpretation and Intuition
- Notebooks

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

Reach Us!

- Office Room: CE802-CE803
- Email:
 - Hamid R. Rabiee: (rabiee@sharif.edu)
 - Maryam Ramezani: (maryam.ramezani@sharif.edu)
- Course notes, homework and solutions, handouts, and other useful resources are available on the course page:
 - <u>https://quera.org/course/18745/</u>
 - Room: (Sunday & Tuesday: 13:30-15:00)
 - o <u>Ebnesina Alef 17</u>
 - <u>https://vc.sharif.edu/ch/rabiee</u>
- Lead TA:
 - Mohammad Javad Ahmadpour: (mohamadahmadpour1383@gmail.com)
- Feedback
 - <u>https://forms.gle/ox1gUHtbh9DCRgH29</u>

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

8

 \bigcirc

Resources

- Textbooks:
 - o Sheldon Axler, Linear Algebra Done Right, fourth edition, 2023
 - Kenneth Hoffman and Ray A. Kunze.Linear Algebra. PHI Learning, 2004.
 - o Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2016.
 - David C. Lay, Steven R. Lay, and Judi J. McDonald.Linear Algebra and Its Applications. Pearson, 2016.

+Other textbooks and course materials.

Hamid R. Rabiee & Maryam Ramezani

 \cap

Structure of the Course

Lectures

Goal: To introduce concepts in linear algebra, and motivate their use and importance.Note: We try to cover useful materials in class, but we recommend you reading more!

Exams

Quiz: 5 with dropping lowest Midterm: 1 Final: 1

Hamid R. Rabiee & Maryam Ramezani

Assignments

- Purpose: To give you a chance to exercise your mind, and to solidify the concepts introduced to you in class.
- Structure: <u>Six theorical problems</u>, and <u>Three</u> <u>linear algebra practical problems</u>.

Importance: Not important unless you want to learn the material and get a good grade.

Lecture Notes

- Lecture slide will be uploaded.
- Many times we will write on board, in real-time, during lecture to prove a theory or answer a question or add some additional explanations. It will be your responsibility to take notes.
- Slides links will be provided on site.

 \bigcirc

1403/07/01	S01		Elementary Row Operations, and Linear Equations
1403/07/03	S02	1	Row Reduction and Echelon Forms
1403/07/08	S03		Vector Space
1403/07/10	S04		Subspace

1403/07/15	S05		Independence (Linear and Affine)
1403/07/17	S06		Independence (Linear and Affine)
1403/07/22	S07	2	Bases, Dimension
1403/07/24	S08		Dimension and Rank
c 1403/07/29	S09		Dimension and Rank

1403/08/01	S10		Inner Product Space	
1403/08/06	S11	2	Inner Product Space	
1403/08/08	S12	5	Euclidean Norm, Inequalities and Angle	
1403/08/13	S13		Orthogonality (Gram–Schmidt, etc.)	

1403/08/15	S14		Linear Transformation
1403/08/20	S15		Linear Transformation
1403/08/22	S16	1	Change Basis
1403/08/27	S17	4	Inverse
1403/08/29	S18		Determinant
1403/09/04	S19		Determinant

1403/09/06	S20		Eigenvectors and Eigenvalues	
1403/09/11	S21		Singular Values and Singular Vectors	
1403/09/13	S22	5	Symmetric Matrices and Quadratic Forms	
1403/09/18	S23		Diagonalization	
1403/09/20	S24		Matrix Factorization	
1403/09/22		Midterm Exam		
1403/09/25	S25	SVD		

1403/09/27	S26		Norm Space
1403/10/02	S27		Derivatives
1403/10/04	S28	6	Derivatives
1403/10/09	S29		Least squares
1403/10/11	S30		Least squares
1403/10/30	Final Exam		

Ο

Hamid R. Rabiee & Maryam Ramezani

Assignments

- 6 Theory
- 3 Programming
 - Basic NumPy for array manipulation
 - Learning linear algebra and application of machine learning.
- You have a total 4 days of allowed late submission (for each theoretical and code parts). 0.5% of the assignment grade will be subtracted for each hour of delay.
- Homework released at the beginning of each part and your responsed should be uploaded on Quera.

CE282: Linear Algebra

0

Hamid R. Rabiee & Maryam Ramezani

Assignments

Assignment	Release	Dealine	Solution Release
T1	1403/07/01	1403/07/22	1403/07/23
P0	1403/07/03	1403/07/28	
T2	1403/07/15	1403/08/11	1403/08/12
Т3	1403/08/01	1403/08/25	1403/08/26
T4	1403/08/15	1403/09/16	1403/09/17
P1	1403/09/04	1403/09/30	
Τ5	1403/09/06	1403/10/07	1403/10/09
Т6	1403/09/27	1403/10/28	1403/10/30
P2	1403/10/02	1403/11/11	

Exams

Quizzes will be held as the following table on 13:00 for half an hour and will be graded in Grade Scope.

Exam	Time
Quiz 1	1403/07/24 13:00-13:30
Quiz 2	1403/08/13 13:00-13:30
Quiz 3	1403/08/27 13:00-13:30
Quiz 4	1403/09/18 13:00-13:30
Midterm	1403/09/22 09:00-12:00
Quiz 5	1403/10/11 13:00-13:30
Final	1403/10/30 09:00-12:00

Ο

TA Classes

TA Classes will be held on Wednesday from 18:00 till 20:00 in room https://vc.sharif.edu/rabiee-ta.

Date	Title
1403/07/18	Part1
1403/08/09	Part2
1403/08/23	Part3
1403/09/14	Part4
1403/09/21	Midterm
1403/10/05	Part5
1403/10/29	Final

Grading Policy

Quizzes

3 points (5 quizzes each 0.75 points; the lowest score will be dropped)

Written

Assignments

5.6 points (each of the first four is 0.85 points, and each of the last two is 1.1 points)

Programming Assignments

2.4 points (preliminary exercises:0.4 points, and the next twoexercises are each 1 points)

Midterm

Final

5 points (Lectures part 1,2,3,4)

5 points (Lectures part 5,6)

Total: 21 Points

Introduction

Lets think about a question!

Hamid R. Rabiee & Maryam Ramezani

Vector

Basic Concept

Data Representations (Linear Algebra)

- How can we represent data (images, text, user preferences, etc.) in a way that computers can understand?
- Organize information into a vector!
 - A vector is a 1-dimensional array of numbers.
 - It has both a magnitude (length) and a direction
- The totality of a vectors with n entries is an n-dimensional vector space.

 \cap

 $V = \int = \begin{bmatrix} -3 \\ 0.7 \\ 2 \end{bmatrix}$

Data Representations (Machine Learning)

- A feature vector is a vector whose entries represent the "features" of an object.
- The vector space containing them is called **feature space**.

Equation with Matrix and Vector Format

House Pricing Example

Price Problem

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

Price Problem

Linear Equation without offset

$$y = af$$

How to convert it to matrix-vector multiplication?

O

Ax = b

Linear Equation with offset

$$y = af + c$$

How to convert it to matrix-vector multiplication?

Ax = b

House Features

- #Room
- Size
- #Bedroom
- Age
- Address features: Street, Alley, ...
- Size of part1, part2, part3, part4
- Floors

CE282: Linear Algebra

0

• #Bathrooms

N number of training data with M featues:

$$A_{N\times M}x_{M\times 1}=b_{N\times 1}$$

Linear Equation

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

Least Squares Error Correction

 \bigcirc

Least Squares

Least Square Method

$$\hat{y} = a_1 f_1 + a_2 f_2 + \dots + a_m f_m + c$$
$$\min ||y - \hat{y}||$$

Linear Algebra and Machine Learning Application

- $Ax = b \rightarrow x = A^{-1}b$ Inverse of Matrix/Pseudo Inverse
- Regression
 1 Linear
 Regression
 2 Polynomial Regression

CE282: Linear Algebra

O

Road Map

Step by Step

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani